
  

We consider an exclusion particle system with long-range, mean-field-type inter-
actions at temperature 1//?. The hydrodynamic limit of such a system is given by
an integrodifferential equation with one conservation law on the circle V: it is
the gradient flux of the Kac free energy functional Fp. For /?< 1, any consta
function with value m e [ — 1, +1 ] is the global minimizer of Fp in the spac
{« : f

¥ u{x)dx = m}. For /?> I, Ff restricted to {u : \ v u(x) dx = m} may have
several local minima: in particular, the constant solution may not be the
absolute minimizer of Ffi. We therefore study the long-time behavior of the par-
ticle system when the initial condition is close to a homogeneous stable state,
giving results on the time of exit from (suitable) subsets of its domain of attrac-
tion. We follow the Freidlin-Wentzell approach: first, we study in detail Fp
together with the time asymptotics of the solution of the hydrodynamic equa-
tion; then we study the probability of rare events for the particle system, i.e.,
large deviations from the hydrodynamic limit.
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1. INTRODUCTION

Continuum (PDE) models of phase transitions have been proposed since a
long time (like for example the Allen–Cahn and the Cahn–Hilliard equa-
tions, see, e.g., ref. 15 and references therein) to model a variety of dynami-
cal phenomena involving two or more phases or constituents. However, in
many of the phase segregation phenomena, like nucleation and metasta-
bility, randomness plays a crucial role. In order to model these phenomena
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one can insert some ad hoc stochastic terms in the original PDE: this has
been done in a variety of ways (see, e.g., ref. 15). However, the choice of the
stochastic terms in modelling a real system requires a deep physical insight
and it is certainly not easy to choose one type of stochastic term that will
reproduce the whole spectrum of phenomena of the real system we wish to
model (see ref. 12 for a review). Also, random effects should be the rem-
nance of microscopic effects. As such, they act on a very fine scale and are
extremely irregular, so that the physically suggested stochastic modifica-
tions of a PDE, typically of white noise type, are often not well posed.

An alternative and, in a sense, more satisfactory way is to look directly
at some stochastic particle model, whose evolution law in the large scale
limit is a PDE, and for which it makes immediate sense to talk about
fluctuations and stochastic effects, on a finer scale.

The progress made in the study of the large scale behavior of
stochastic particle systems, (see e.g., ref. 20), has made possible to attack
directly from a microscopic standpoint the problems. Very detailed results
are already available in the case of systems without a conservation law, see
for example refs. 5, 6 and 3. The particle system in this case is a spin flip
dynamics with long range (mean field type) interactions. Instead, the case
with one conservation law is much less developed. We focus here on an
exchange process with mean field type interactions.

In 1991, Lebowitz, Orlandi and Presutti studied an exclusion process
on Z with long range interaction at temperature fi~l. More precisely, the
interaction is 2-body and given by JN(x, y) = N~lJ((x — y)/N), with
x, yeZ. J is a smooth, compactly supported positive function of integral 1.
They proved, among other things, that suitable empirical averages on the
space scale Nl+d and time scale yV2(1 +S) converge to the solution of the dif-
fusion equation
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with Dp(u) = [1 — /?(1 — w2)]/2 and uo a smooth initial condition wit
Dp{uo(r))>0 for all r (and thus, Dp{u(r, t))>0 for all r and t, see ref. 16).
When p>fic=\, Dfi{u)^0 in an interval [—w|, + w | ] (the forbidden
interval). The system was derived as a first order expansion (see ref. 16) of
a dynamics which is reversible with respect to the local mean field Gibbs
measure with interaction JN.{l7-Z0> Here we just recall a few basic facts: the
constrained free energy(17) associated with this measure is



which has a symmetric double-well structure if $ > 1. The two minima m^
and — nip are called phases and mp>mpx. The values ±m^ are th
inflection points of fp, so that fp is convex when restricted to [ — 1, — w]
or [ m | , 1]. There is a standard terminology for this equilibrium model:
[ - nip , — w | ) u (nip1, nip ] is called the metastable region, and [ — 1, -ni ]
u [ — nip , 1 ] is called the stable region. The convergence to the solutin of
(1.1) holds in the stable and metastable regions, but there is no trace in
(1.1) of the transition between these regions. It is certainly expected that the
behavior of the particle system at a very large time will be different in the
stable and metastable regions.(17) In the metastable region, it is expected
that the system started on a homogeneous profile, eventually rearranges
itself into regions in which ux ±m, separated by interfaces.

In 1994, Yau(21) studied the hydrodynamic limit for a continuous spin
model with local mean field interaction and established the validity of a
nondegenerate diffusion equation similar to (1.1), for initial conditions
analogous to these in ref. 16. However, he could also prove the validity of
such an equation for very large times: up to t = 0{exp(Ns)), for some e > 0.
Yau conjectured that the result could be improved up to choosing e = 1
(at a more physical level this had been observed earlier by Lebowitz and
Penrose(19)).

The relevance of the integral equation
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(or its analog for ref. 21) was recognized in both refs. 16 and 21. Equation
(1.3) describes the behavior of the system on space scale N and time scale N2.
When J^O, there are two competing effects: the diffusion and a nonlocal
advection term. Note that if J is taken to be a delta-distribution, then
Eq. (1.3) becomes (1.1).

In the particle systems in refs. 16 and 21 there are three distinct spatial
scales:

(i) The microscopic scale, i.e., the lattice scale;

(ii) The mesoscopic scale, i.e., the scale of the potential (distances of
O(N) lattice sites);

(iii) The macroscopic scale, i.e., the scale (or family of scales) in
which the range of the potential is very small (for example O(N1+S) lattice
sites, for some <S>0).

We study the conjecture that we mentioned above(21) on the
mesoscopic scale where we average the density over a size of the order of



the range of the potential. More precisely, we provide estimates on the exit
time from suitable neighborhood of a homogeneous profile m in the
metastable region.

Our work parallels Comets',(3) which deals with the metastability
problem for the analogous model without conservation law. The same type
of study can be done about any profile which is a minimum of Ffi in the
weak topology. We have not characterized the set of minima of Fp and we
believe that it is a challenging problem.

In ref. 10 it is observed how the evolution Eq. (1.3), when considered
in finite volume, for example on a torus (€, is the gradient flux of a free
energy,
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where

This clarifies the formal connection between this model and the standard
PDE models, notably the Cahn-Hilliard equation, which is just (1.4) with
Fp equal to

where / is a symmetric double well potential (we can take fp itself, with
/? > 1) and £ is a positive parameter. We mention here common features
between the Cahn-Hilliard equation and (1.3), which are physically relevant:

— When studied on the whole line, (1.3) has a unique stationary front
joining the two pure phases.(4) This front is easily proved to be stable(1)

(compare with ref. 2 where the Cahn–Hilliard equation is treated).

— The Cahn-Hilliard equation and (1.3) have a very close behavior
in the so called sharp interface limit (see ref. 11 and references therein).

Therefore, we can view the particle model we are discussing as a good
candidate for a stochastic modification of the Cahn Hilliard equation.

We remark briefly that, unlike the traditional formulation of the
Cahn–Hilliard equation, the evolution equation (1.3), as well as the under-
lying particle system, includes also antiferromagnetic or partly antiferro-



magnetic systems (this is the case in which J(x) < 0, for some or all values
of x), with their peculiar phenomenology.

2. THE MODEL AND THE MAIN RESULT

We take a system of particles hopping on VN=(Z/NZ). A particle
configuration is an element tjeXN= { — I, + 1}** and the dynamics is
given by the generator which is defined for all g: XN -* U as

where ZN({1, X) is the normalizing factor. This property is usually referred
to as reversibility with respect to vN and, in general, it plays an importan
role.(20) In particular, it implies that, for any AeIR, vN is an invariant
measure for the process r\{ •).
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where tj1'J is the configuration r\ with the i and j entries exchanged and
t/,y('/) = 0 if |/—y| / 1 and otherwise

where

where JeC2(<g;U) and J(x) = J(-x) for all xe<£. For simplicity, we
assume that / > 0 , \v J= 1 and that J{x) is non increasing for xe [0, 1/2],
with 7(1/2) = 0. The dynamics we just introduced is finite dimensional and
therefore can be constructed directly from a finite collection of exponen-
tially distributed variables (see ref. 20, p. 159, or ref. 18), once an initial
condition ?/(0) is given. The stochastic process generated by LN will be
denoted by {fi(t)}teR and ti(-)eD([0, oo); XN), the Skorokhod space of
XN-valued functions. It can be easily verified that LN is self-adjoint in
L\XN; dvN), where v^ is any element in the family of probability measures
indexed by the parameter XeU, defined as



In visual terms, the particles hop on the lattice at Poisson times, with
a tendency to clump together (if J ^ 0 ) and, in one unit of time, there will
be O(N2) jumps, due to the factor N2 in front of the rates (2.2).

We are going to observe this system on the spatial scale N, i.e., we will
look at the empirical density

and /uN is an element of M^, the space of positive measures with density
f with respect to the Lebesgue measure on # such that f ^ 1 . Unless
otherwise stated, Af# is equipped with the (metrizable) topology of weak
convergence induced by C°(<<?) (we denote the duality by (•,•))• Therefore
fiN(rj(-))eD(U+; M#) . We will use the notation ueM^, with the meaning
that u{x) dxeM^. We will denote by Mm, w e [0 ,1 ] the convex set
{weM^: J u(x) dx = m).

The hydrodynamic limit (law of large numbers) for this system (see
ref. 10 for a proof) in the case of deterministic initial conditions says that
if {t}N(0)}N is a sequence such that fiN(t}N{0))eM# converges to a limit
which we represent via its density uosMif, then {/uN(t)}N converges to
a(-, t) which is the unique weak solution of (1.3).

In this paper we prove a Large Deviation Principle from the
hydrodynamic limit for general J and apply it to understand the long time
dynamics in the ferromagnetic case (7^0 ) . This is particularly interesting
when uo(x) = m for all xeW and m is in the metastable region which we
define as the set of constant profiles m which are strict local minimizers
in the weak topology of Ffi among all functions ueMm, but not absolute
minima in the same class. In the stable region, Fp constrained to Mm is
strictly convex and has therefore only one minimizer.

The link between the dynamical large deviation functional (which we
will call IT(u) for 7 > 0 and ueD([0, T]; MJ) is provided by the solution
of the quasipotential problem.™ We show that for suitable £ e Mm that
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We are then addressing the problem of the exit from a domain:m if T^ is
the first exit time from the basin of attraction of m, then there exists c> 0
such that for TV sufficiently large



thus answering the problem raised in ref. 21 in the restricted case of
volumes of mesoscopic size. This strongly suggests that a statement like (2.7)
should be true also if the volumes are of macroscopic size, for example
I VN\ = O(N1 + S) for any 6 > 0, but to obtain such a result requires stronger
probability estimates on the system.

We will prove a result much stronger than (2.7), but only for a family
of domains in M+. We now explain in more details this result. The
problem is that the energy is not continuous in the weak topology but only
lower semi-continuous. Thus, we need neighborhoods D of m such that in
any small ball B around one minimizer of F on 3D, say u*, there are
profiles ueBnDc such that F{u) is close to F(u*). We cannot show that
this property holds for any D but rather build a large collection of such
good D. For m and y>0 such that any u(-) = moe [m — y, m + y] i
metastable, we show that there is a dense set 3> of positive reals anda
family, {FTy, for Te3>), of weak closed neighborhoods of E= {ueM^ :
u( •) = m e [m - y, m + y]j} attracted to E with the property that if T < T,
then rT.?czmtwrTY (where intw is the weak interior). Now we can define
for a path ueD([0, oo), Mi), the stopping time

Notations. We denote the constant function u{x) = m, for x e %
simply by m. Also, besides its standard meaning, we will often use the
notation [a, b~\ ( - l < a < 6 < l ) to indicate the set { a 6 l , : « ( - ) s m ,
a^m^b}. In the sequel, we drop the index /? (e.g., m+ =m^, m*=m$,
and so on) and we write the energy as
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Finally, if dFT y is the boundary of FT y and dmFTy y = dFTy yn{u:ju = m},
our main result, proved in Section 7, reads

Theorem 2 .1 . For £>0 , there is yo such that if y<yo, Te<T—s
and N large enough, then for any rjNe {MN(rlN)e^T,y}

with



We will denote by {(pg}j>o an approximate identity on (€. By this we
mean that for each <S>0, <ps is even, C°°, supported on ( — S, S)<=cdand
lim^o\<psfdx = f(0) for every/e C°(V).

In order to keep the notation light, we will write the evolution equa-
tions always in strong form, even when they have to be interpreted in the
weak sense: the weak form is obtained by integrating against a function
Ge C1>2([0, T~\; <&) and performing the formal integration by p.

The paper is carried out for simplicity in the case of d= 1. In no argu-
ment this is essential: the probability arguments require no modifications,
while the PDE arguments require sometimes better Sobolev estimates,
which can be done straightforwardly. In case of d > 1 the 2-body potential
would be J(-/N)/Nd and the escape time in Theorem 2.1 is of order
exp(const.Nd).

Plan of the Paper. In Section 3 we establish that all possible limits
in time of the solution of (1.3) on the circle c€, are extremal points of the
energy. This section is not properly essential to the derivation of the main
result, except Lemma 3.2, Lemma 3.3 and Corollary 3.7.

In Section 4, we define and characterize the metastable region and
show that there, homogeneous densities are asymptotically stable for (1.3)
in the weak topology. Then, we focus on a homogeneous profile, say of
density m, and consider a small neighborhood D of m, such that m is the
only extremal point of F in D.

In Section 5, we prove Large Deviation estimates: that is, we estimate
the probability of being in small tubes (in the weak topology) about some
trajectories linking m to the boundary of D; the estimates we obtain are
uniform in the initial configuration (in D). We have built on the work of
Kipnis, Olla and Varadhan in ref. 14. We mention that our rate function
is not convex, and that lower semi-continuity is not obvious as in ref. 14.

In Section 6, we build neighborhoods of metastable states with
desirable properties. Also, we establish several properties of the rate func-
tion.

Finally, in Section 7, we derive our main result on the exit time.

3. THE HYDRODYNAMIC EQUATION AND ITS ASYMPTOTIC
BEHAVIOR

In this section we study some properties of the solutions of
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One difficulty arises from the behavior of the equation when u takes on the
values ± 1: in particular one can verify that F is not Frechet differentiable
at any (smooth) u such that |w(x)| = 1 for some xs'fl.

A crucial result for us is the following:

Lemma 3.2. For r > 0 , the map uo \-^u(uo, T) is continuous from
M^ with the weak topology to M^ with the L°° topology.

Proof. Let u and v" be solutions of (3.1) with initial condition uo and
v" respectively, and assume {v"} converges weakly to uo. If *P(t, x) is th
heat kernel in c€, u can be represented as
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for uo of average m e [ — 1, 1 ]. We denote by u(u0, t) the solution of (3.)
at time t with initial condition uo. Existence and uniqueness result for (3.1)
on the whole line were obtained in ref. 4 (see ref. 10 for the case of the
circle). Henceforth, we define by

The main result of this section is the following:

Theorem 3.1. For any u0eMm, {u(u0, t)} t>0 is relatively compact
in L^Ctf). For any limit point u* eMm there exists Ae U such that

and u* e C°°(<<?).
Strictly speaking, this result will not be used in the text. However it

requires little more effort than the minimal results on the time asymptotics
of (3.1) needed in the later sections and it gives a more complete picture.

The key fact that we will repeatedly use is that the functional in (2.9)
is a Lyapunov functional for (3.1). In fact, we will show that if uo e (— 1, 1),
and ; > 0,



Now, for an arbitrary small z1( the classical bound | ^ ( 0 l i < C2/%/t gives
us

We can rewrite (3.5) between time t1 and t, and if we recall that
m ^ - * i ) l i = l then,

Clearly, tt-> \\g\\^t is increasing. We can multiply both sides of (3.6) by
exp(— at) to obtain
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and similarly for v". If w" = v" — u, then

Now, since w" is uniformly bounded, there is a constant Cj such that

Now, for a > 0, and any function g(x, t) define



Metastability with One Conservation Law 1061

We can choose <x0 such that Cl Jexp( — OL0S)/^/S = 1/2 and tak s
supremum over time up to t on both sides of (3.7),

In other words,

Now, for any e>0, let tt be small enough so that 2C *Jt\ exp(ao7
1)<e,

then choose n large enough so that 2 YP(tx) * w"|ro exp(a.0T)<e. Then
(3.8) implies that |wn( • , T)\ w «£ 2e. |

We will need some uniform control on the behavior of the derivatives
of u{uo, t). We collect these results in the next two Lemmas.

Lemma 3.3. For any to > 0 and n, there is C(n, to) > 0 such that for
any uo e Mm and t ̂  to

Remark 3.4. It is straightforward to perform parabolic estimates
(like for example in ref. 13) to show that if M^eC00!1!), then u(uo,t) e
C°°Wfor any t>0.

Proof. Since the case \m\ = 1 is trivial, we will assume \m\ < 1. We
first assume that i^eC00. Remark 3.4 allows us then to use (3.1) and
integrate by parts. Also, we start with the cases n = 1 and 2 and explain
how the general case follows.

Suppose that there is C > 0 such that for any t > 0

and,

Suppose also that there is S > to such that



and we can set C = 3 \JX\\ and obtain (3.10) and (3.11). Note that we only
used the structure of (3.1) and the boundedness of \u(t)\2. We now derive
the same equations for uxx using that \ux{t)\\^C{\, to) when t^to>0.
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For any te[S-to,S) we can integrate (3.11) between S – t and S to
obtain

and thus by (3.10),

which after integration yields

which is absurd. Thus, we can take C(l, to) = 2(C + 5/to) ec'«.
Now, we prove (3.10) and (3.11). We multiply (3.1) by u — m and

integrate by parts

By Cauchy–Schwarz inequality

Now, we multiply (3.1) by uxx and integrate by parts

then by Cauchy-Schwarz inequality
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We differentiate (3.1), multiply by D3u and integrate by parts

It is now easy to obtain from (3.14) and (3.15) that for t^to and some
K>0

Similarly, for t^to>0, there is C(2, to) such that \uxx(t)\\^C(2, to). The
inequality for any n is obtained by taking further derivatives and integra-
tion by parts, and by repeating the same procedure.

To treat now the case of a general initial condition, note that
u\->\Dku\2 is a weakly l.s.c. functional. Indeed, it can be written as a
supremum over continuous functionals

Therefore, since un
o = a.n * uo is C°° and converges weakly to wo, Lemma 3.

tells us that for t>0, u(u", t) converges to u(uo, t) in L°° (and therefore
weakly). By lower semicontinuity

Hence (3.9) holds for any initial condition. |

Lemma 3.5. For any /„ > 0, and uo e Mm there is D^n, to) > 0 and
D2(n, to) > 0 such that for / ̂  to
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and for t^s^t0

Proof. We can assume that \m\ < 1. From Lemma 3.3, u(uo, t) e C°°
for t^to. By taking n derivatives of (3.1) and the L2 norm on both sides
and (3.9) we obtain (3.17). By Cauchy–Schwarz inequality

By using Agmon inequality, there is C2 > 0 such that for t > s > to

and (3.18) is obtained when we use (3.19). |

Lemma 3.6. If uoe{-\, 1) is C2 > 1W, then u{uo, t)e(-l, 1) for
all t > 0.

Proof. It has been established in ref. 4 that u(uo, t) e [ — 1, 1 ]. Also
when uo is C1A(^), we can interpret (3.1) in a strong sense. We define
v= 1 — u2 and rewrite (3.1) as an equation for v. We multiply both sides of
(3.1) by - 2 M to obtain

Now, we use that

to obtain

Now, for each t, we define C(0 = min^e^ v(t, x). We fix a T and take t < T.
We assume that the minimum at time t of v is realized at x. Let n be a large
integer to be taken to infinity later, and define A = T/n. We will often use
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that v is C2-lC£) on the compact [0, t~\ •/.<€. Now, by Taylor  expansion,
there is C which only depends on T, such  that

Thus, as C{t — A)^v{t — A, x) by definitio n, we ha

Now, from (3.20), there is y finite independent of t such  that

Thus,

We multiply by exp(y(r — A)) both terms of the equation to obtain

Now, we use that { is bounded by 1, that ey'^eyT, and that there C, >0
such  that

We sum (3.21) over all t of the form kT/n for ke {1,..., n} to  obtain

The result follows now as n -* oo. |

Proof of Theorem 3.1.

Step 1. We have seen that for any to>0 and t^t0, \u(t)\2<:\ ’and
\u x(t)\2^C(\, to). This implies that the family {u{t),t>to} is equicon-
tinuous and uniformly bounded. Ascoli–Arzela's theorem implies that  for
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any sequence of times going to infinity there is a subsequence {tn} and M*
continuous such that

Now, by symmetry we can assume m > 0. If m < 1, there is s > 0 such that
for r ^ 0,

We choose any e > 0 such that (3.22) holds and define

Note that by Corollary 3.5, for 5 small enough and n large, if \t-tn\<S,
then

Step 2. We know by Lemma 3.3 that u(to) is C2>'. Let the sequence
{u"e( — l,l),neN} be defined by u"o{x) = (1 - l/«) u(to, x). It is easy to
see from Lemma 3.2 that for any t ^ 0 , u(un

o, t) and its first derivative con-
verge pointwise to u{t + to). The reason to choose such u" e (– 1, 1) is that
the kernel of the Frechet derivative of F is well defined only for u e ( – 1, 1)

If we multipy (3.1) by SF/Su and integrate by parts, we obtain for t^O,

If we integrate the previous equation and recall that F is bounded,



By continuity of w*, there is xo such that u*(xo) = m. If we think of the
circle ^ as [ —1/2 + xo, 1/2 + xo), then we can define
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Also, if we restrict the space integration over A, and for no large enough

Now, by the continuity of F in the sup norm and Fatou's Lemma, we
obtain

and

Then A => [a, b~\ and by Poincare inequality in [a, b]

Because of the uniform Holder continuity in time in sup norm
(Corollary 3.5)

Hence, a.s. in [a,b]

If we evaluate this expression at xo and recall that u* is continuous



then u(uo, t) is an extremum of F.

Proof. For t > 0, u(uo, t) e C°° and \ u(uo, t) = m. We can define xo,
by u(t, xo) = w and
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Because the right hand side is bounded, u* remains away from –1 and 1,
and by (3.22) {u* > E} = [0, 1 ]. Also, (3.25) shows that u* e C00. |

We prove now a corollary which will be used in Section 6.

Corollary 3.7. Let me { — I, 1), uoeMm and t >0 . Assume that

and

Now, as in the previous proof, our hypothesis (3.26) implies that for
xe[a, b]

Thus, for any xe[a , b], tanh(/?(A + ./* u(t,x))) = u(t, x) and by (3.22)
u(t, x) e [ 1 - 2g, 1 + 2e]. Thus, [a, b] = [0, 1 ] and the result follows. 

4. THE METASTABLE REGION

We have seen in Section 3 that our dynamics is associated with a
Lyapunov functional F. In this section, we study some extrema of F given
in (2.9) in Mm. When u = m, then mi-f.F[w] =(/>(m)/[} — m2/2 is smooth
and even. If ?> 1, f [wi] has a double well shape with minima at ±m +

where f"(m + ) = 0 and inflexion points at ±m* where F"(m*) = 0. From a
physical point of view, if the convex hull of F is the free energy of a macro-
scopic system, then a homogeneous density u = m with me{— m+,m + ) is
not an equilibrium state. Accordingly, we define the metastable region to
be the set of me(— m+,m + ) such that u = m is a local minimum of F
in Mm. The concept of local minimum requires that we specify the topol-
ogy. Indeed, the result that we need would be trivial if we were to use the



supremum norm topology. However, the Large Deviation estimates require
us to work with the weak topology.

The main result of this section is the characterization of the metastable
region. We actually provide two proofs of this result: a direct proof in
Theorem 4.1, which gives as a useful corollary that in a small L2

neighborhood of m, F[u] – F[m~\ is equivalent to \u — m\\. The second
proof (Lemma 4.3) relies on an integration by parts of (3.1) and Lemma 3.2.

We can define m e (0, m+) as
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It is then easy to see that for any m^m and | / = 0 , (4.1) implies that

Theorem 4.1. For fi > 1, any homogeneous density me[—m+, —m)
u (m, m+ ] is a strict local minimizer of F in the weals topology among
elements of Mm.

Proof.

Step 1. We show that if m is a strict local minimizer in L2, then it is
a strict local minimizer weakly. Assume that F(m) is not a strict local mini-
mum weakly. In other words, there exists a sequence {/„} with

In conjunction with l.s.c. of F,(3) this implies that

Now, Mt->(y* u, u) is weakly continuous so (4.3) implies that

We rewrite



Thus,

1070 Asselah and Giacomin

with

Also, one can check by Taylor expansion that for — 1 < x < M,

with M=( l +m)/(l -in). Now, (4.4) and (4.6) imply that {/„} goes to 0
in L2 and therefore m is not a strict local minimum in L2.

Step 2. We assume now that f is small in L2, and we will rewrite F
separating the contributions of the small and large values of f.

Because m>m, we can choose S > 0 such that S < 2( 1 —m) and

If we define A = {x : | / | >S], then \A\ goes to 0 with |f |2 and

For any set B<=^, it is convenient to define

Note that (4.5) implies that Ent(f, 5)>0.
Now, after a simple algebra (2.9) reads
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with, if / = fiA<-\ACf

Step 3. We show that for some C > 0 independent of n, / , ^
~C(lf2)Ent(f,n).

First for xeAc, | / (x) | <<S. Thus, as «5 < 2( 1 -m)

and a similar inequality for \j/ . Adding up these inequalities and recalling
(4.7),

Note that

Thus,

Finally, by (4.2), (4.6) and (4.8),

Step 4. We show that I2 = o(Ent(f, <€)).

We have already seen that
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Also,

Finally,

This completes the proof of Theorem 4.1. |

Corollary 4.2. If m is in the metastable region, there is eo > 0 and
y > 1 such that

Proof. By the upper bound of (4.5), it is trivial to see that for y large,
y \u — m\\~^F[u] — F[m~\. Also, the previous proof shows that F [ M ] —
F\_m] ^8Ent{u-m, ( g) + o(Ent(u-m,<^)), and the two estimates of (4.5)
imply that there is e o > 0 such that for y large enough (4.9) holds. |

Lemma 4.3. For / ?>1 , and w e [ - m + , —w)u(w,m + ] , there is
eo>0 such that if uoeMm and \uo — m\2<e0 then, there is C > 0 such that

Proof. We multiply both sides of (3.1) by u — m and integrate by
parts

Now, as | ux = 0, we have that
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Set y = <f>"{m) — <j>"(m)>0. By the Cauchy-Schwarz inequ

with C=(2y( l -m 2 ) /3)~ 3 ( J f f | J x | 1 ) 4 . We obtain by Poincare's inequality
and (4.2),

Now, \u(t) — m\2 decays as soon as

and the conclusion of the lemma follows easily. |

Remark 4.4. It is easy to see that Corollary 4.2 and Lemma 4.3
hold uniformly in (m — y,m + y)c(m,m + ) and y small, with the following
trivial changes: there is EO, y and C > 0 such that if \uo-\MO|2<£O and
\uoe[m-y, m + y~\, then

and,



Remark 4.5. It is straightforward to see that if m is in the
metastable region and the support of J is sufficiently small, there exists a
nonconstant profile ueMm such that F[u~\ <F[m~\.

Remark 4.5 can be directly checked by taking u(x) = m+ for xe [0, x]
<= <6 and u{x) = —m+ otherwise, with x = (1 + (m/m +))/2. The fact that w
have to choose J supported on a small interval is natural if we look at the
problem on U€, with L > 1, rather then on #, and choose J supported in
(—1/2, 1/2) c U4 (by a scaling transformation we can go back to {€, where
/ would be supported on a interval of size 2/L). The limit considered in
refs. 9 and 17 corresponds to taking L->oo. In this rescaled setting
Remark 4.5 simply says that for any m fixed in the metastable interval, we
can choose L sufficiently large such that there will be a spatially nontrivial
profile u with \L^u(x)dx = mL with F[u]<F[m~\. The larger the space
(i.e., L), the larger the interval of values of m for which F[m] is not the
global minimum in Mm and this interval will approach the whole meta-
stable region as L -> oo.
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5. LARGE DEVIATIONS

In the Freidlin-Wentzell(8) approach to estimating the exit time from
a domain, estimates on the probability of rare events in finite time play
a fundamental role. The upper bound on the expectation of the exit time
will be obtained from a lower bound for the probability of remaining in a
small tube about a trajectory which performs the escape at low cost, such
as the trajectory @ that we will encounter in the proof of Lemma 6.4. With
respect to the by now standard results on Large Deviations from the hydro-
dynamic limit (see e.g., ref. 14) we will need this lower bound to be uniform
over configurations in an arbitrary small neighborhood of [m – y, m + y].

On the other hand, the lower bound on the exit time follows from a
Large Deviation upper bound. One difficulty in obtaining the upper bound
is that our rate functional IT, defined in 5.1 (5.2), is neither given by a
supremum over l.s.c. functionals nor convex. Thus, in our approach we
need to show (Lemma 5.10) that we have a good rate function in the
terminology of ref. 7.

5.1. The Large Deviation Principle

Note that in the weak topology on M^, a basis of neighborhoods of
0 is

where q>s is an approximate identity on <€, as introduced in Section 



Metastability with One Conservation Law 1075

We define, see ref. 14, for «eD([0, T], M#) and Ge C1>2([0, T] x<g)

We stress once again that we give a meaning to (5.1), and to many other
formulas, by making formal integration by parts, moving in this way all the
derivatives to G. For the same u, we define also the rate functional

In the proofs we will also need the corresponding quantity used in ref. 14
for SSEP

A partial outcome of this section is summed up in the following Large
Deviation statement. Since we give it only for deterministic initial condi-
tions our Large Deviation functional with initial condition w0 e M^ will be

Given any measurable set A cD([0, T~\, M#), we denote by A the interior
of A and by A its interior.

Theorem 5.1. For any uoeM^ and any T>0, IT is a good rate
functional,(7) i.e., it is lower semicontinuous and it has compact level sets.
If /%(())eM,,, converges (weakly) to uQ, then the sequence {nN}Nez+>
fiNeD([0, r ] ;M # ) , has a full Large Deviation principle with rate func-
tional IT, i.e., for any measurable set A c/)([0, T], M^)

where rjN= fiN(0,i/N).
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Theorem 5.1 is a consequence of Corollary 5.8, Remark 5.9, Lemma 5.10
(lower semicontinuity as well as compactness of level sets of IT follows
from the same properties for IT) and Theorem 5.11.

We recall the superexponential estimate of ref. 14, Theorem 2.1, that
we will use in the form:

Proposition 5.2. Set J=0. For any 3>0

We give here also a Lemma which clarifies the relationship between 7T

and IT.

Lemma 5.3. 7T(u) < oo is equivalent to IT{u) < oo. Moreover if one
of the previous inequality holds, then IT(u) = 7T(u) + RT(u), with

Proof. Let us first assume that 7T(u)<oo. By Lemma 5.1 of ref. 14
there is HeL2([0, T]; Hl) such that

and u satisfies weakly

Equation (5.8) and the definition of 7T imply that for any Ge C1'2

where,
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But, by the definition of / and 7, we have

Observe that

there is C > 0 such that

which implies that IT(u) < oo.
Assume now that IT{u) < oo. The very same argument as in Lemma 5.1

of ref. 14 implies that there exists HeL2([0, T\, H1) such that

and u solves

Therefore ft=H + /JJ*u and

By using (5.9) we can express RT(u) in terms of u and the proof is
complete. |

5.2. Lower Bound and Uniform Estimates

The lower bound on the probability of rare events is achieved via a
change of measure procedure. As in ref. 14, we study small asymmetric pe
turbations of our original process: with respect to this new process,
unlikely events will become typical.
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Therefore we introduce a process with generator

where Dif(tj) = f(ij'+i)-f{tj) (f is any function from XN to U) and,

and geC2yl satisfies

The set of all such g's will be called Ji. As a consequence of (5.10),
| s ( f , - )L^Mand \gx{U . J l ^ J l f for any t^T. Also, if

then,

and,

where K(M) is a constant which depends only on M.

Remark 5.4. The bounds (5.11) and (5.12) show that (5.6) holds
for the process with 7^0 and also for the process generated by A#. In this
latter case the supremum over tjN e XN can be replaced by the supremum
over r/N e XN and g^Jl. This follows from a direct bound on the Radon-
Nikodym derivative of the law of new process between 0 and T with
respect to the law of the SSEP in the same interval of time.(14)

In this subsection, we denote by u(uo, t) the weak solution at time t
of the (more general) evolution equation
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with initial condition uo. Similarly to what was done in Lemma 3.2, if
'Fit, x) is the heat kernel in (€, u(uo, t) can be represented as

Now, we convolve with (p5 both sides of Eq. (5.14) to obtain

We would like to replace (Jx * w)(l - u2) by [Jx * w)(l — ((pd * u)2). We will
use the following Lemma.

Lemma 5.5. For any ueM^ and bounded <j>,

Proof. We write

and by the Cauchy-Schwarz inequality
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Lemma 5.6. For u(uo, t) solution of (5.14), with any uo, there is a
constant K(M) > 0 depending only on M such that

Proof. After integrating by parts (5.13), it is easy to see that there is
K(M)< oo such that

Then, we apply Lemma 5.5. |

Let P^ N denotes the measure on the paths of the process generated
by A;? starting at rj.

Theorem 5.7. For any S, eo>0, there is a neighborhood B of 0
and No such that for any uoeD, N> No and rj with t]N{rj)euo + B, we have

Proof, We consider

where ¥(t) is the heat kernel on <̂  introduced in Lemma 3.2. For a fixed /,
the rate of change of FNtS{rj{s), t – s,x) is

where, for each xe^, MN{s,x) is a P\ ^-martingale with
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We now expand cf in (5.19) and rearrange the terms

Thus, if we integrate up to time /

It is important to note that for x and x' sufficiently close,

Now, we first focus on the term

We need to replace (rjj(s) — r/i+ i(s))2 by a function of the empirical density.
To be able to use the superexponential estimate, we will need first to
average this quantity over region of macroscopic size S. However, when
performing the required integration by parts, the test function may be
smooth only on the scale 5, thus producing a non vanishing error. We
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therefore break the time integral into \'Q
 s' and \'t_g,, with S «d' « 1, and

use the regularity of Wx to estimate directly the second piece [[_#.
We note also that we can replace the sum in (5.23) by and integral,

with an error of order c(S)/N, which is therefore negligible since we take
first N to infinity. Thus, define

where

and

Now, we use twice the inequality | g * / | 0 O < | g | i \f\x and the fact that
|9><SII = 1 to deal with the integration from t — S' to t

and a similar estimate holds also with P. Thus,
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We need now to substitute Q(x; r/) with Av s(Q)(x) = (\/2S)x
]\y\^s Q(x + y) dy. We first estimate the difference

Now, since sup^, I / J ^ ^ c , we can take f out of the average with little
expense. We use now the fact (easily proven from the explicit form of the
heat kernel) that for s^S',

so that the term in (5.24) is bounded by c'S/(S') ' and vanishes as
<5/(<5')5/2->0 when<5->0.

In summary, we have seen that

where we have called

Finally, using that *F, + *FXX = 0, we obt
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We only need to consider paths r\t such that

Indeed (5.20), (5.22), Chebychev and Doob inequalities imply that

On the other hand, the estimate (5.6), see Remark 5.4, implies that

Now the proof is easily completed if we define w(t) = ̂ ^(rj,) — u(uo, t)
and we apply Gronwall's Lemma, as in the proof of Lemma 3.2. |

In the last section we will need a lower bound on the probability of
being close to a specific smooth trajectory <t>(t), te [0, 71]. Let So>0 an
T= T(80) as in the proof of Lemma 6.4.

Corollary 5.8. For any 8 and e > 0 , there is a neighborhood of 0,
B, and No such that for N>No and r\ with fiN(ri)em + B,

Proof. This follows repeating the standard change of measure argu-
ment, as in the proof of the lower bound in ref. 14, and by applying
Theorem 5.7. |

Remark 5.9. To complete the proof of the lower bound in
Theorem 5.1 one needs to show that infu6j77-(w) does not change if the
infimum is taken only over smooth functions. This can be proven by
following for example the line of the proof of Corollary 6.5 below. Since
this part of Theorem 5.1 is not used in the sequel, we omit the details.

5.3. Upper Bound

In this section we fix T>0.
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Lemma 5.10. Let D([0, T~\, MA be equipped with the Skorokh
topology, M>0, and C closed in D([0, T], MA

(i) {«efl([0,J],M i !):/ j .(K)<¥} is compact

(ii) IT: D{[0, T], MA -> [0, oo] is lower semicontinuous

(iii) lim inf inf IT(q>e * u) > inf IT(u)
e-»0 ueC ueC

Proof.

Step 1. We first show that {ueM^: 7T(u)^M} is compact (this was
neither shown nor needed in ref. 14).

Let {un(t,x)} be such that TT(un)^M. There is {Hn{t,x)} (see
ref. 14) and {«^(jc)e[-l, 1]} such that

and,

and w"(0, x) = u"(x). After multiplying (5.30) by w" and integrating by parts
over <€,

By the Cauchy–Schwarz inequality and the fact that ^ is bounded and
<6[-l,l],

First note that | | («") 2 <7' implies that there is u(t, x)eMt and a sub-
sequence of u" (that we still call u" here), such that

For a smooth G(x), let
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Then,

Thus, {Kn(?)} is an equicontinuous and equibounded family. By Ascoli-
Arzela, for each G, there is V(l, G) continuous and a subsequence which
depends on G such that

which means that we can choose u so that \ u{s) G is continuous, and

A fortiori u" converges to u in the Skorokhod topology. Now, since IT is
l.s.c.

Step 2. Let {«"} be such that IT(u") < M. We show that there is a sub-
sequence converging to u e M^ and

First, there is M such that IT{u") ^ M for any n. By Step 1, we know that
there is a subsequence converging to u and 7r(M)<Afr. We have seen in
Lemma 5.3 that IT{u) = 7r(w) + RT(u). We first show that

It is then easy to see that lim RT{u") = RT(u), and we leave it to the reader.

Because of (5.32), this means that for H(t)eL2{[0, T], dt)
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and in the last step we used the Cauchy–Schwarz inequality. Now, for
xe / , , \x,— x\ < 1/iV so that the second sum has the estimate

Now, just as in (5.31), \\ (M*)2< 1 +M. Thus, for any s, there is N inde-
pendent of k such that

Let /, = [(/– l)/N, i/N) and x, an arbitrary point in /, for /= 1,..., N.
For any t ̂  T,

To estimate the second sum, we write for any xelt,

After integrating over time (5.37), and using the Cauchy-Schwarz
inequality
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Once N is fixed, by Step 1, there is ko such that for k>ko>

and (5.36) follows, It is easy to conclude that

Note that this proves that IT is l.s.c. on the compact sets {« : IT{u) ^ M)
for M > 0. Now, to complete the proof of the l.s.c. of IT, assume that
IT(u) = oo and that {u"} converges to u. From what we saw, no sub-
sequence can belong to {u : IT(u) < M } for some finite M. Thus, any limit
point of {IT(u")} must be infinite.

(iii) Assume the left hand side of the expression in the point (iii) of
Lemma 5.10 is finite. There is M> 0 and for any e > 0 there is uee C such
that IT{<Pe * « t ) < M . Thus {q>e * us}e>0 belongs to a compact set and ther
is £„ going to 0, un e C and u with IT(u) < M such that cpa * un converges
to u. Now, for any open neighborhood of 0, say Bw,

Thus,

By l.s.c. of IT,

We show an upper bound estimate for closed set by comparison with
SSEP, where this has been shown in ref. 14.

Theorem 5.11. For C closed subset of D([0, T~\, A / J ,
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Proof. Recall (Lemma 5.3) that 7T(u) < oo implies that IT(u) =
IT(u) + RT(u) and we can write

Thus, there is a constant M such that

For ease of reading we recall here three facts

(i) 7T(q>B * u) 4,7T{u) by convexity

(ii) lim sup sup– log( /%/*„( - )eC) )

< - inf IT(u) by Theorem 4.1 of ref. 14

(iii) lim inf inf lT{(pe * u) ^ inf IT{u) by Lemma 5.10
£-•0 ueC ueC

By Varadhan's Theorem,(7) (ii) implies that for any continuous and bounded
functional F on M + ,

Note that Fe: MH-> lT(<pe * u) A M is continuous and bounded. We claim
that

Assume that for a moment. Then Fe(u) + FG(q>B* u) is continuous and
bounded and (5.40) implies that
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Thus, by Chebychev inequality,

However, (iii) implies that

The result would then follow as M goes to infinity. We prove now the
claim (5.41).

Recall that

Thus
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By Holder's inequality

Since we take the limit in N first and then in s, the last three terms vanish
because of the superexponential estimate. |

6. THE QUASI-POTENTIAL

6.1. Introduction

Let m and y > 0 be such that [m — y, m + y] c (w, m+). Our first goal
is to build a closed neighborhood of m, say Dy, invariant under the evolu-
tion (3.1). Though we will not prove that a random pertubation of the
macroscopic equation exits Dy at the points of dDy minimizing the energy,
this idea will guide us: let £* be such a minimum; we need to show also
that for y small, there are points in Dc

y arbitrarily close to £* with an
energy arbitrarily close to F(£*). Closeness is measured in the weak topol-
ogy, and the matter is not trivial since F is only l.s.c. We have not been
able to see that this was always true, rather we build in Corollary 6.3 one
such Dy based on soft arguments and the properties of (3.1).
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The second contribution of this section is to give in Lemma 6.4 an
explicit formula for the minimum of the rate functional over paths with
initial condition m and final state, say £eDy.

We consider the compact subspace of M^, Sy = M„,n {u:\ue
\_m — y, m + y]}. We endow Sy with the inherited weak topology. Our idea
is to work first in L2(Sy, dx) and look for arbitrary small (in L2) invariant
neighborhood of [m – y, m + y]. For ease of reading we recall some useful
facts. For so small enough,

is an L2 closed neighborhood of [m – y, m + y] such that

(*) 3C>0,VuoeU, u(uo, t)–\uo ^e~Ct [Remark4.4]

(**) 3y>l,VueU, y u- \u >F[u] -F\ f«] ^ - u- \ u
J 2 LJ J 7 J 2

(***) \tuo eU,Vt> 0, dF^°' ^ J < o [Corollary 3.7]
at

Let d2 0 be the L2 boundary of U in Sy. We can choose 8O > 0 such that

For 8 < So, we define

The reason to choose So so small is that for ued2U, ^ [ M ] — F[\ M] = 3O

(as one trivially checks), and thus once a trajectory hits d2 U, it stays in U
by (***). Finally, for T>0, define

and, if dmrTy denotes the weak boundary of FTyr\Mm in Mm, we define



It is clear that aT is independent of y. We first gather some simple proper-
ties of FTj y and <xr.

Lemma 6.1. For T>0, (i) FTy is closed and invariant; (ii) for
d>0, there is a weak neighborhood of 0, B, such that FTy + BndrT+Sy

= 0 and the weak interior of FTt y is not empty; (iii) aT is increasing.

Proof. Time invariance follows by definition: if u(uo, t)eU for some
/ ̂  T, then V.s ̂  0, u(uo, t + s)eU, i.e., u{uo, s) e />_y for J > 0.

Now, we show that r ^ is open. Let uoeFc
T and {«"} converge

to MO. By definition u(uo,T)eUc and there is an L -neighborhood of 0,
say B2, such that
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Thus by Lemma 3.2, there is a weak open, Bw with

Therefore, for n large enough u(un
o, T)eu(uo, T) + B2. Now, by definition

of U,

Thus, u" $ FT y for n large enough, and FC
T y is open.

(ii) drT+gr and FTy being compact, we only need to show that
drT+Syr\F7%y = 0. We claim that uoedFT+3 y implies that

The first part is implied by (i). For the second, assume that u(uo, T+S')
eU for S' <d. Then by (***), for any e > 0 u{uo, T + 5' +e)eint 2 U so
that by Lemma 3.2, there is a neighborhood around uo where all points
share the former property. This implies that MoeintM,7"r+<5 y. Now, note
that for any open Bw, FT< y + Bw is open and what we have just seen there
is Bw such that FTy + Bwc:rT+Siy. this implies that the interior of FTy, is
not empty.

(iii) Let T > T. Recall that F is l.s.c. and dmFT,y is compact. Thus,
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Now, uT, edmFT, y means that there are u" e rc
T. n Mm converging to ur.

Because rTyrtMmcrT.ynMm, urerTy, implies that ur edmrTy, but
then (ii) is true

Thus, we can assume ur$FT Y. By continuity of the time evolution in L2,

In other words u(ur, t0— T)edmrTy. Now, /"decays along the evolution
so that

Lemma 6.2. For e>0, there is yo>0 such that for any y <yo

Proof. By contradiction, suppose that there is h > 0, yn-*0 and
un e dFTt y such that

There is a subsequence, say again {«„}, and u* e Mm so that {«„} converges
to u* weakly. Now, for any c5>0, u{un, r+(5)eint {/and u(un, T-S)eUc.
Lemma 3.2 implies that u(u*, r+<S)eint U and u(u*, T-5)eUc. Thus
u*edmrTy. The l.s.c. of F, together with the continuity of wj(->F[m]
imply that

and this contradicts (6.3). |

Corollary 6.3. Let T>0 be a continuity point of a. There is
t* edmFTy such that for any e>0, there is yo such that for y>yo, and
any Bw, weak neighborhood of 0, there is (,se(£,* + Bw)r,rc

Ty and
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Proof, a. is increasing, so the set continuity points is dense. Let T>0
be one of them. There is 8>0 such that OL(T+S) <a{T) + e/2. Now, with
the notation of (6.2) uT+s$FT y, otherwise, u{uT+3, T)ed2U. This in turn
would mean that F[u(uT+s, T)) – F[/M] = 8, and because F decreases
strictly in any positive time, u{uT+s, T+S) would belong to the L2 interior
of U, contradicting uT+sedFT+s. Finally, let ie = u(uT+s> ^)e^m^V,y-
Because dmFTy is compact, let £,* be a limit point of £„ along a subsequenc
and Ce = UT+S- It is easy to conclude now by recalling Lemma 6.2. |

We can now define Dy as FT? for a continuity point of a. Also, for £*
as in Corollary 6.3, we can define

Lemma 6.4.

Proof.

Step 1. We show that / r(«) >F\_£*~\ - F [ m ] .
We may assume that /J-(M) < oo. Recall that this implies that u is

weakly continuous in time. We need to regularize u. Recall that for SSEP,
the hydrodynamic limit of the density evolves according to the heat equa-
tion. Let P, be the heat semi-group. For 8 > 0, consider the extension of u
on [ - 1 , r + 1 ]

and

Let Tsu(x,t) = u(x — 81,t — 82). Because u evolves according to the heat
equation in [ - 1 , 0] u [ T, T+ 1 ] we can define H as

Now, for \52\ <e0 and 0<e o < 1/2
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Now, be convexity of IT

If we denote by va the time and space convolution appearing in the left-
hand side of (6.7) and recall that u is weakly continuous in time, then as
e goes to 0, vs goes to u in the Skorokhod topology and thus by l.s.c.
1-e Avs) ~* 7-e r ( " ) = ^r(")- This implies that 7T(vs) -» 7T(u) and

Now for a smooth u{t,x) with IT(u)< oo, there is H= H—Jx*u and

When u is smooth, the following calculation make sense

And thus,

In our case, the smooth function is ve. After integrating between — so and T
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When e is small enough, ve(—eo, -) = m. By l.s.c. of F,

Step 2. We show that F[{*~\ - F [ w ] ^MT>0MHiT)IT(u). IIn  in fact,
consider the time reversed evolution with w(0, x) = £*(x) and

Then, by Lemma 3.3 and 4.3, for any S > 0, there is T> 0 and C( 1, T) such
that

Let u = u(T), and for te [0, <5] define

We need to estimate the rate function of such a density between [0, (5].
Assume there is H of mean 0 such that

If we multiply both sides by H, use that v, = (m — u)j8 and integrate

Hence, at any time re [0,6]
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where we used Poincare's inequality. Now, recall that

and,

Thus

Now consider u which solves Eq. (6.10) between time 0 and T(S) and
which is defined as u(x, T{5) + s) = v(x, s) for se[0,S]. Let now <t>(t) 
u(T{8) + 6-t) for ?e[0, T{S) + S]. For any e>0

Recall that u is smooth in [e, T(S)], so by using the definition of IT

On the other hand,

and by Fatou's Lemma

Now, because C* is in L2, l im^o |M(<^*, e ) - ^ * | 2 , and by continuity of F
in L2, we have that F[u(£*,e)~\ ->F[\*'\ and



We will not need to look at the entire H{T, y, 6). Indeed, if
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Finally,

The result follows as d -> 0. |

We need to establish now a lower bound for inf IT{u) over paths such
that u(0)e Sy,u(0)e([m-y, m + y]+ BJ and u(T)edDr + Bw. If H(T,y, d)
is defined as

then, we show that for any e > 0 there is yo such that for y > yo

holds for large time T and d small. Note that in any weak neighborhood
of m, there will be a density £, with F [ ^ ] — F [ m ] large and thus
F[£*] -F[£] much smaller than F[£*~\ -F[m~\. (for instance, when £, is
very oscillatory going from — 1 to 1 with mean m.). However, such density
will have a large value of IT(£), and they don't preclude (6.11) to hold.

Corollary 6.5. For any £ > 0 and T>0, there is e5>0 such that
(6.11) holds.

Proof. We first show, that there is a constant C independent of S and
T such that for any ueH(T, y, 5),

then in (6.11) we can replace H(T, y, S) by KnH(T, y, S). Recall that K is
compact and there is M < co such that for any u e K,
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Also, recall that we can decompose IT(u) = IT(u) + RT(u), where IT(u) is
convex. To show (6.12), we only need to see that

which by a simple exercise only require

Write,

After integrating over [0, T~\, and applying the Cauchy–Schwarz inequali

It is easy to conclude that for any ueK,

Now, £ and T are fixed. There is 3 such that

by uniform continuity of F in the supremum norm, and

by continuity of F in L2. Now let ueH{T, y, 8) n K, such that IT(u) — s <
IT(v) for veH(T, y, S). We have
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W e can define, for any S<S0, T{uo, S) = inf{t: u(uo, t)e Ud). As long
as uoeDy, we have T(uo, d) < oo. We show now that this time T(uo, S) is
uniformly bounded.

Lemma 6.6. For S<SO, there is To such that for any uoeDy and
t>Tot u(uo,t)eUs.

Proof. Let a = sup{T(uo, S) :uoeDy} and {un}eDy such that
lim T(un, d) = a. There is uoeDy, such that {«„} converges to uo weakly
(possibly along a subsequence). Now, for any t> T(uo, 5), u(uo, t) belongs
to the L2 interior of Us. By Lemma 3.2, for n large «(«„, /) belong to Us

as well, so that T{un, S) < t and a < oo. |

Lemma 6.7. There are a > 0 and To > 0, such that if u(t, •) e Dy/Us

for all t e [0, To~\, then IT<>(u)>a.

Proof. Let 7>0 . Assume that u(t,-)eDy/Us for all fe[0, 71] and
that IT(u) < oo. We can define i / by

and t; satisfies (3.1) and M(0, X) = t;(0, x) = MO(X) e Dy/Ug-. If w = v — u, then

and w(0, x) = 0. We multiple (6.16) by w and integrate by parts to obtain
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By applying the Cauchy–Schwarz inequality on terms of the right hand
side,

Hence,

Now, by Lemma 6.6, there is To such that v{To)e U6/2, so

and we can set a = exp( — CTO) S/2y2. |

7. EXIT TIME

Let m and y > 0 be such that [m — y, m + y] <= (w, m +). If T is a con-
tinuity point of a, then for any e > 0 let Te be another continuity point of
a with TEe(T-s, T). Ts is needed because the Large Deviation estimates
give informations only about small tubes around given paths. In estab-
lishing a lower bound for the exit time, we need to be sure that a path does
not exit immediately, i.e., it must be at some distance (weakly) of the
boundary of our domain. We recall that in Lemma 6.1 (ii) we showed that
there is a neighborhood Bw such that rT^y + BwcirTy. Now, we can
define the stopping time for weD([0, co),Sy)

The main result of this section, is

Theorem 7.1. For e > 0 , there is yo such that if y<yo, Te<T—e
and N large enough, then for rjNe {fif/(t}N)erTr y}

Proof. The proof follows closely the arguments of Theorem 4.1 in
Chapter 4 of ref. 8.

Step 1. We show the upper bound part of (7.1).
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For any r > 0 , N, y and rjN,

By definition, if xy(u)>t, then u{s) eTT y for s^t. Thus, by conditioning
w.r.t. i%_i)7- and using the Markov property

where supr?. means the supremum over {rj: fiN(t]N)erTy\. Now, (7.2)
and (7.3) imply that

For £>0, we choose yo so that (6.4) holds and Bs such that (6.11) holds.
By Theorem 5.7, there is 7̂  such that any configuration t\ with

Let Ce be the density which appears in Corollary 6.3: we recall that £e$rTY

but that F[CJ is very close to the infimum of F on the boundary of Fjy.
Also, let <P the path build in the proof of Lemma 6.4 with &(0) = m an
<&(T2) = Cs' <& is a path whose rate functional is very close to the minim
over all path joining m to the boundary. The Large Deviation lower bound
Corollary 5.8 establishes that for N large enough
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This completes the first inequality.

Step 2. For the lower bound, we can restrict rjN to be such that
£^[Ty] < oo. Let (5>0 and define

and

By Lemma 6.1 (ii), the interior of FT y is not empty. Thus, for 5 > 0 small
enough C and B are in rTy.

We will now use repeatedly the Strong Markov Property (SMP): since
we are dealing with a Poisson jump process in finite volume, it is straight-
forward to see that such a process has the SMP.

Now, we define stopping times {Sk} and {Tk} on Z>([0, oo), Sy) by
induction. First To = 0 and for k ^ 0

Now, let T= Tx + T2. By the Markov property

and v{u) = M{k>0 : u(Tk)erT_yc}.
It follows from Theorem 5.7 that for N large enough
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Therefore, by using the SMP and choosing r\N such that MNIIN)
 e

 ^T,,V'}

Now, a path {nN{rjN){t), t^O} being only right continuous, it could
when started in B jump over C making v = oo. However, we will see that
during [0, Ty], for typical values of ry, most of the paths will be "almost
continuous" and on those paths v < oo when xy < oo. We think of d' > 0 as
a fixed number and for any a < /? define

We establish below in Lemma 7.2 that

with

Now,

Indeed, if xy< oo and the paths are in AlOx:, they must always cross C
when going from B to FC

T y and therefore v< oo and xy = Tv.
Taking now expectation of nonnegative quantities, we can exchange

sum and integrals
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where we have used the SMP. Now, any path in A[0 _ r ] needs at least a
time 5' to go from C to B

Thus, noting that by definition fxN{t]N){Sn_i)e C, (7.7) can be written

Now, for each term of the sum in (7.8)

by using the SMP again.
Finally,

Now, to reduce those estimates to finite time Large Deviations estimate, we
introduce the time T, that we will choose appropriately latter and rewrite
the denominator of (7.9) as

Also, we note that
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To complete the argument it would suffice that there exists T>0, 3' and
No such that VN>N0

This is established by using Theorem 5.11, Corollary 6.5 and Lemma 7.3
below. |

Lemma 7.2. For any d>0 and a>0, there is <5'>0, and No such
that

Proof. First define

Now, we recall that from Step 1 of the proof Theorem 5.7 there is /?>0

Now, for any a > 0
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Now, similarly to ref. 14 Eq. (4.10), there is c > 0 such that for any / > 0 ,
rjN and N large

Hence, optimizing over /

We can choose a and 5' such that fi-ot= -a and (<x-e2/(4c<5')) = -a.
This just requires that 5' s$£2/(4c(2a + /?)). The result follows easily. |

Let B be an open neighborhood of [w — y, m + y~\ eSy and D =
rT< y + B. Note that D is closed. Now, we define Ex and E2 in D{ [0, T] , 51,,)
by'

Lemma 7.3. For any M > 0 ,

and

Proof. The arguments for EY and £ 2 are similar so we show it only
for Ex. Let unsE1 converging to u in the Skorohod topology and
IT{u) < M. We recall that this means that for e > 0 there is no such that for
n>no

where g is an increasing bijection of [0, T] and rf is any metric for the
weak topology.(7) As IT(u) < oo, u is continuous in time so it is enough to
show that



But because uneEl, (7.12) means exactly that. Observe now that
Theorem 5.11 gives that
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where, in the last step, we used (7.10). |
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